Deformations of the Lie-poisson Sphere of a Compact Semisimple Lie Algebra

نویسنده

  • IOAN MǍRCUŢ
چکیده

A compact semisimple Lie algebra g induces a Poisson structure πS on the unit sphere S(g ) in g. We compute the moduli space of Poisson structures on S(g) around πS. This is the first explicit computation of a Poisson moduli space in dimension greater or equal than three around a degenerate (i.e. not symplectic) Poisson structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

Deformation Quantization of Coadjoint Orbits

A method for the deformation quantization of coadjoint orbits of semisimple Lie groups is proposed. It is based on the algebraic structure of the orbit. Its relation to geometric quantization and differentiable deformations is explored. Let G be a complex Lie group of dimension n and GR a real form of G. Let G and GR be their respective Lie algebras with Lie bracket [ , ]. As it is well known, ...

متن کامل

Finite - dimensional non - commutative Poisson algebras ]

Non-commutative Poisson algebras are the algebras having an associative algebra structure and a Lie algebra structure together with the Leibniz law. For finite-dimensional ones we show that if they are semisimple as associative algebras then they are standard, on the other hand, if they are semisimple as Lie algebras then their associative products are trivial. We also give the descriptions of ...

متن کامل

J ul 1 99 7 Deforming the Lie algebra of vector fields on S 1 inside the Poisson algebra on Ṫ ∗ S 1

We study deformations of the standard embedding of the Lie algebra Vect(S 1) of smooth vector fields on the circle, into the Lie algebra of functions on the cotangent bundle T * S 1 (with respect to the Poisson bracket). We consider two analogous but different problems: (a) formal deformations of the standard embedding of Vect(S 1) into the Lie algebra of functions on ˙ T * S 1 := T * S 1 \S 1 ...

متن کامل

A geometric approach to Conn's linearization theorem

We give a soft geometric proof of the classical result due to Conn stating that a Poisson structure is linearizable around a singular point (zero) at which the isotropy Lie algebra is compact and semisimple.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017